Influence of particle size and fluorination ratio of CFx precursor compounds on the electrochemical performance of C–FeF2 nanocomposites for reversible lithium storage
نویسندگان
چکیده
Systematical studies of the electrochemical performance of CF x -derived carbon-FeF2 nanocomposites for reversible lithium storage are presented. The conversion cathode materials were synthesized by a simple one-pot synthesis, which enables a reactive intercalation of nanoscale Fe particles in a CF x matrix, and the reaction of these components to an electrically conductive C-FeF2 compound. The pretreatment and the structure of the utilized CF x precursors play a crucial role in the synthesis and influence the electrochemical behavior of the conversion cathode material. The particle size of the CF x precursor particles was varied by ball milling as well as by choosing different C/F ratios. The investigations led to optimized C-FeF2 conversion cathode materials that showed specific capacities of 436 mAh/g at 40 °C after 25 cycles. The composites were characterized by Raman spectroscopy, X-Ray diffraction measurements, electron energy loss spectroscopy and TEM measurements. The electrochemical performances of the materials were tested by galvanostatic measurements.
منابع مشابه
Lithium-based antioxidants: electrochemical properties and influence on immune cells
Introduction: Lithium salts are known as effective psychotropic medicine for treatment bipolar disorder and may be used to treat alcoholism, schizoaffective disorders, and cluster headaches. The antioxidant activity and immunomodulatory effects of prospective lithium compounds have been investigated in this work. Materials and Methods: The antioxidant properties were studied by the voltammetry...
متن کاملEffect of molar ratio and calcination temperature on particle size of CeO2/-Al2O3 nanocomposites prepared via reverse micelle process
A porous composite of cerium oxide and gama aluminum oxide pigments were prepared via sol-gel processing controlled within reverse micelles of nonionic surfactant Triton X-114 in cyclohexane. The precursor in heated at several calcinations temperature between 823 to 1123K. This process includes three steps. In the first step of preparation the ceria sol was prepared. In the second step, cyclohe...
متن کاملImproved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملElectrochemical properties of iron oxide nanoparticles as an anode for Li-ion batteries
The synthesis of iron oxide nano-particles by direct thermal decomposition was studied. Simultaneous thermal analysis and Fourier transform infrared spectroscopy results confirmed the formation of iron-urea complex, and disclosed iron oxide formation mechanism. Calcination of the iron-urea complex at 200°C and 250°C for 2 hrs. resulted in the formation of maghemite along with hematite as a seco...
متن کاملA high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013